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a b s t r a c t 

In recent years, wrist-worn smart devices such as smart wrist band and smart watch have pervaded our 

everyday life. Under this trend, the security issue of these wearable devices has received considerable at- 

tention as these devices usually store various private information. Conventional methods, however, do not 

provide a good user experience because they either depend on a secret PIN number input or require an 

explicit user authentication process. In this paper, we present Gait-watch, a context-aware authentication 

system for smart watch based on gait recognition. We address the problem of recognizing the user under 

various walking activities (e.g., walking normally, walking upstairs and walking with calling the phone), 

and propose a feature extraction method from gait signals to improve recognition accuracy. Extensive 

evaluations show that Gait-watchimproves recognition accuracy by up to 30.2% by leveraging the activity 

information, and can achieve 3.5% Equal Error Rate (EER). We also report a user study to demonstrate 

that Gait-watchcan accurately authenticate the user in real-world scenarios and require low system cost. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

With recent advances in embedded computing technologies,

mart wearable devices such as Apple Watch and Fitbit wristband,

ave become increasingly popular and play significant roles in our

aily lives. With the pervasiveness of these devices, security is be-

oming crucial over time as they accumulate a large variety of sen-

itive data about the users. In particular, with sensors embedded in

mart watches, the collected sensory data can be explored for the

nderstanding of user’s physical and mental health states. For in-

tance, the accelerometer information collected by the smart watch

an be mined to uncover user’s daily life activities [1] . 

Traditional authentication methods such as passwords do not

ffer good user experience because of the need for keyboard. A

ostly common deployed method in current smart watches is the

o called Unlock Pattern scheme as in Fig 1 (a). In this scheme, the

ser is presented a 3 × 3 grid and the secret (password) of a user

s a drawing on that grid (i.e., a sequence of lines connecting the

ots). During enrollment, a user has to choose a pattern and dur-
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ng the authentication phase, he has to recall his pattern and draw

t on the screen. However, the pattern-based unlocking scheme has

hree major weaknesses. First, they are susceptible to smudge at-

acks, where imposters extract sensitive information from recent

ser input by using the smudges left by fingers on touch screens.

ecent studies have shown that finger smudges (i.e., oily residues)

f a legitimate user left on touch screens can be used to infer pat-

ern [2] . In addition, they are susceptible to shoulder surfing at-

acks. Smart watches are often used in public settings (such as sub-

ay stations, schools, and cafeterias) where shoulder surfing often

appens either purposely or inadvertently, and patterns are easy

o spy [3] . Third, despite of numerous possibilities in pattern se-

ection, researchers have found that there is a high bias in the pat-

ern selection process, e.g., people often pick the top left corner

s a starting point and prefer straight lines in their pattern. The

esults in [4] indicate that the security offered by this scheme is

ess than the security of only three digit randomly-assigned PINs

or guessing. 

Motivated by the above issues, we aim to develop an unob-

rusive, continuous, and implicit authentication system for smart

atch based on gait recognition. Biometric gait recognition refers

o verifying or identifying persons by their walking style. Extensive

tudies from psychology and biometrics have demonstrated that

iometric gait contains distinctive patterns that can be used for

https://doi.org/10.1016/j.adhoc.2020.102218
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2020.102218&domain=pdf
mailto:weitaoxu@cityu.edu.hk
mailto:yiran.shen@csiro.au
mailto:chengwen@szu.edu.cn
mailto:lijq@szu.edu.cn
mailto:weiwilson.li@sydney.edu.au
mailto:albert.zomaya@sydney.edu.au
https://doi.org/10.1016/j.adhoc.2020.102218


2 W. Xu, Y. Shen and C. Luo et al. / Ad Hoc Networks 107 (2020) 102218 

Fig. 1. Android pattern lock authentication system [4] . 
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security purposes [5–7] . Gait based authentication offers several

advantages over traditional authentication system. For instance,

it is non-intrusive, does not require explicit authentication pro-

cess, and provides continuous authentication while walking. On

the other hand, gait, as a biometric trait, is hard to be forged and

replicated. An imposter can observe how the genuine user walks

but still have difficulty in replicating the walking patterns. 

Although gait-based recognition has been well explored in the

literature, there remains several challenges on smart watch. Firstly,

due to the high freedom of arm, people could walk in a vari-

ety of ways (e.g., walk normally or walk with calling the phone).

The large majority of existing studies on accelerometer-based gait

recognition have used a very restrictive experimental setup where

the performance evaluation was conducted on a dataset collected

from a controlled laboratory environment and the participants are

asked to walk normally. As the pervasiveness of smart watches in

the wild, there is a need for robust and efficient authentication

system in a realistic environment. Besides, the smart watches have

limited energy and moderate computing power, thus to improve

energy efficiency and reduce computational cost is a crucial task

for authentication system on resource-constrained smart watches.

Although deep learning-based technology can achieve high recog-

nition accuracy [8,9] , it is computationally expensive and usually

used in cloud computing architecture which depends on reliable

wireless connection. 

In this paper, we propose a context aware gait-based authen-

tication system on smart watches. Specifically, we implement an

activity detector in the system to deal with different activities,

and then identification is performed on corresponding training

dictionaries according to the output of activity detector. More-

over, inspired by the success of Scale Invariant Feature Transform

(SIFT) [10] for images feature extraction, we propose a novel fea-

ture extraction method to represent the characteristics of gait sig-

nals. The method is able to extract discriminative features of gait

dynamics by searching extrema in the scale space of gait accel-

eration signals. We further apply sparse coding scheme and a

novel probabilistic sparse representation classification to improve

the recognition accuracy. To the best of our knowledge, this is the

first work for gait-based authentication using commercial smart

watches. The main contributions of this paper are threefold: 

• We propose a context-aware authentication system in which

the authentication system infers and leverage activity informa-

tion during authentication. Evaluation results show that com-

pared to the traditional methods which do not take the activ-
ity into consideration, the improvement of recognition accuracy

can be up to 30.2%. 

• We propose a novel feature extraction method which can ex-

tract robust and discriminative features from gait signals. We

further employ a sparse coding scheme to build the training

model based on the features extracted from each user. Then the

identity is recognized based on a novel probabilistic sparse rep-

resentation classification (PSRC). Evaluation results show that

Gait-watchis able to achieve 97.3% recognition accuracy and

3.5% EER. 

• We implement Gait-watchon Samsung smart watch, and con-

duct a user study to evaluate the performance in real world en-

vironments. The results show that Gait-watchcan authenticate

the genuine user with 95.3% true positive rate. We also report

the system overhead to demonstrate the feasibility on contem-

porary smart watches. 

Partial and preliminary results of this paper have appeared in

ur previous work [11] . Comparing to the conference version, this

aper contains significant new contributions which are listed as

ollows. 

1. We present a novel feature extraction method which can

extract robust and discriminative features from gait signals

( Section 4.2 ). 

2. We employ a sparse coding scheme to build subject-specific

training model based on the features extracted from each user.

The authentication is then performed on the training model by

leveraging the activity information ( Section 4.3.1 ). 

3. We apply a novel probabilistic fusion model to further improve

recognition accuracy ( Section 4.3.3 ). 

4. Compared to previous conference version, we extend the

dataset from 20 subjects to 36 subjects. Then we re-do all

the experiments and add several new experiments to evaluate

the performance of the new system. Evaluation results show

that Gait-watch can achieve 17 − 20% higher accuracy than two

competing gait recognition systems. Moreover, it is able to

achieve 97.3% recognition accuracy which is 4.6% better than

the previous conference paper ( Section 5 ). We add a new sub-

section named validity analysis ( Section 6.4 ) to discuss the po-

tential threats in the design and the methods of our study. Fi-

nally, we significantly extend related work and discuss more re-

cent works in terms of gait recognition and feature extraction

in activity classification ( Section 2 ). 

The rest of this paper is organized as follows. Section 2 dis-

usses the related work. We provide an overview of Gait-watchin

ection 3 and detail the system architecture in Section 4 . In

ection 5 , we evaluate the performance of Gait-watchon datasets.

e then implement the system on smart watches and con-

uct user study to evaluate the system in Section 6 . Finally,

ection 7 concludes the paper. 

. Related work 

In this section, we discuss the related work in three aspects:

ait recognition, applications of SRC and feature extraction for ac-

ivity classification. 

Gait Recognition. Gait recognition has been well studied in

he literature. From the way how gait is collected, gait recogni-

ion can be categorized into three groups: vision based, radio sig-

al based, floor sensor based, and wearable sensor based. In vi-

ion based gait recognition system, gait is captured from a remote

istance using video-camera. Then, video/image processing tech-

iques are employed to extract gait features for further recognition.

 large portion in the literature belong to this category [12,13] .

ecent works also explore the feasibility of using radio signal to
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dentify people [14,15] . In floor sensor based gait recognition, sen-

ors (e.g., force plates), which are usually installed under the floor,

re used for capturing gait features, such as ground reaction force

GRF) [16,17] or heel-to-toe ratio [18] . 

Compared with vision-based and other non-accelerometer

ased gait measurements, acceleration can reflect the dynamics

f gait more directly and faithfully. For instance, accelerometer

ased gait recognition do not suffer from the existing problems

or vision-based methods, like occlusions, clutter, and viewpoint

hanges. Existing works of wearable sensor based gait recognition

re mainly based on the use of body-worn accelerometers. The first

ork of accelerometer based gait recognition is proposed by Ailisto

t al. [19] and further developed by Gafurov et al. [20] . In the ini-

ial stages, dedicated accelerometers were used and worn on dif-

erent body positions, such as lower leg [20] , waist [19] , hip [21] ,

ip pocket, chest pocket and hand [22] . With the prevailing of

martphone, researchers have proposed several gait-based authen-

ication systems by utilizing the built-in accelerometer [5,6,23,24] .

or example, in [23] , the researchers have proposed an unobtru-

ive gait verification system for mobile phones. In [24] , the authors

tudied the impact of different phone locations such as hand and

ocket. In recent years, researchers start to use emerging energy

arvester to achieve gait recognition [25] . In addition, the unique

ait has been exploited for key generation to protect user’s per-

onal devices [26–28] . 

Recently, there are several papers study gait-based authentica-

ion system for wrist-worn devices [29–32] . Compared to smart-

hones, wrist-worn devices have several advantages because users

lmost always wear their watch in the same location and orienta-

ion. The authors of [29] studied smartwatch-based biometric gait

ecognition. However, they only use simple statistical features such

s mean and stand deviation and traditional classifiers such as ran-

om forest and Naive Bayes. [30] focuses on studying the perfor-

ance of same-day, mixed-day and cross-day experiments. 

Although various feature selection and classification methods

ave been proposed, most of the existing studies assume that the

ser is walking normally except [33] . In [33] , the researcher aim

o identify users based on the way during their multiple activities

nclude walking, jogging, climb up stairs, and climb down stairs.

owever, the recognition accuracy is relatively low ( 70% − 90% ). To

he best of our knowledge, this is the first work for gait-based au-

hentication system that considers various activities. To overcome

he challenge of various activities, we propose a context-aware au-

hentication system and a sparse fusion method to improve the

ecognition accuracy. 

Applications of SRC. SRC is an emerging classification method

nd has been widely used in recognition tasks of sensor areas.

everal papers have exploited the sparsity of multiple measure-

ents to improve the system performance. [34] used CS to com-

ress GPS signals and exploits the information of various prop-

gation paths to improve the SNR of GPS signals. In [35] , the

esearchers proposed opti-SRC by optimizing the random matrix

sed in SRC to increase the performance of face recognition sys-

em in smartphones. In [36] , the authors improved face recognition

ccuracy by fusing several channel state information (CSI) vectors.

he authors of [37] improve the performance of SRC by using a

eighted sparse neighborhood-preserving projections. The authors 

n [38] improve recognition accuracy by exploiting the sparse rep-

esentation of several face images from different views. In [39] ,

he authors developed an acoustic classification system on wire-

ess sensor networks by applying SRC to improve the recognition

ccuracy. 

Features Extraction for Activity Classification. With the preva-

ence of wearable sensors and devices, activity classification using

mbedded sensors has drawn more and more attention. The flow

hart of sensor-based activity recognition is similar, and usually
nclude signal pre-processing, feature extraction, and classification

sing machine learning methods [40] . Traditionally, different types

f features are combined together to achieve high accuracy such

s time-domain features, frequency-domain features and heuristic

eatures [41,42] . The adequate combination of features is a crucial

ask as the classification accuracy highly depends on a good rep-

esentation. Inspired by the feature extraction algorithms in com-

utation vision community [10] , we present a novel feature extrac-

ion method that can extract discriminative features for each sub-

ect. Similar to SIFT which is robust to image scale and rotation, the

roposed method is robust to changes of gait velocity and magni-

ude. The localisation of the feature points in [43] and our method

re all based on SIFT, but the description of the features are differ-

nt: the descriptors of our method are calculated from the gradient

hile the method of [43] calculates descriptors directly from the

-scale of the temporal signal. Another issue in activity recognition

s that activity classification results are sensitive to sensors’ orien-

ations. To address this issue, researchers either use orientation-

ndependent features or use signal transformation to counter ori-

ntation changes. Such problem does not apply to smart watch as

mart watch is always worn on one of user’s wrist. However, user

ay perform different activities due to the high freedom of arm. In

his paper, we address the problem of gait recognition under dif-

erent activities by building independent training models for each

ctivity. 

. System overview 

In this section, we will describe the architecture in details. As

hown in Fig 2 , the flow chart of Gait-watchconsists of the follow-

ng components. 

Offline Training. During the offline dictionary training phase,

ait signals are denoised via a moving average filter. After denois-

ng, feature extraction algorithm is applied on the filtered signal to

btain a cluster of feature descriptors. Then the feature descriptors

re used to build a training dictionary A via sparse coding scheme.

fter obtaining A , the column reduction algorithm [39] is applied

o obtain a optimized training dictionary Ā . Then the training dic-

ionary Ā is used in the classifier as explained in Section 4.3.3 . 

Online Processing 

Walking Detector To save energy consumption and extend bat-

ery life, Gait-watchis only activated when the user is walking.

herefore, a walking detector is firstly applied to indicate whether

he subject is walking or not. Once Gait-watchdetects the user is

alking, the accelerometer data will be processed further. 

Activity Classifier In a realistic environment, the user can per-

orm different activities during walking, which poses a major chal-

enge for gait based recognition on smart watch. To deal with this

ssue, Gait-watchadopts an activity classifier to infer the specific

ctivity of the user and leverages the activity information while

erforming recognition. 

Feature Extraction After walking detector and activity classi-

er, feature extraction is applied to obtain a cluster of feature de-

criptors from the test signal (accelerometer data). The feature de-

criptors can effectively represent the walking pattern of the gen-

ine user and are discriminative between different people. After

his step, we will obtain a cluster of feature descriptors. 

Probabilistic Sparse Representation Classification (PSRC) Now 

oth the training dictionary Ā and the feature descriptors y i are

assed to the classifier. The � 1 classifier first finds the sparse coef-

cient vector x i . Then the vectors of different gait cycles are fused

ased on a novel probabilistic fusion model, and the fused sparse

ector is used to calculate the residuals and confidence level. Fi-

ally, the confidence level is used to recognize whether the walker

s the genuine user or imposter. 
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Fig. 2. System architecture.. 
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4. System design 

In this section, we detail the design of signal pre-processing,

offline dictionary training, and classification in turn. 

4.1. Signal pre-processing 

4.1.1. Walking detector 

As the first step, walking detector is essential to avoid applying

expensive recognition algorithms during periods of non-motion.

The raw accelerometer signals along three axises of smart watch

fluctuates greatly and irregularly due to the changing direction of

smart watches and arbitrary body movements. However, we ob-

served that the acceleration along gravity direction exhibits reg-

ular patterns because of the repetitive nature of walk. Fig. 3 de-

picts the acceleration values along gravity of different activities.

We can see that the acceleration along gravity shows a rhythmic

pattern because of the repetitive nature of walk. The intuition is

that the smart watch bounces maximally along the gravity dimen-

sion, and the bounce-peaks correspond well with the heel strikes.

Based on this observation, we apply the method in [44] on acceler-
Fig. 3. Acceleration along gravity. 

 

c  

q  

c

R  

w  

v  

s  

l  
tion along gravity direction to detect whether the user is walking

r not. It is worth mentioning that the repetitive nature of walk

as first utilized in NASC [44] to count steps on unconstrained

martphones. We borrow their idea and make some improvements.

e give a description of the improved walking detection method

n Algorithm 1 . 

Algorithm 1: Walking Detection. 

Input: acceleration samples a (i )(1 ≤ i ≤ N acc ) , lag τ ; 

Initialization: search window (τmin , τmax ) = (40 , 65) , 

walking frequencies ( f min , f max ) = (1 . 2 , 2 . 3) , auto-correlation 

threshold R th =0.7, spectral energy threshold F th = 400 , 

STATUS=NOT WALKING ; 

for i = 1 : N acc do 

for τ = τmin : τmax do 

R (i, τ ) =Auto-correlation (i, τ ) ; 

end 

R max (i ) = max R (i, τ ) ; 

if R max (i ) ≥ R th then 

F f = ST F T (a ( j)) (1 ≤ j ≤ N) ; 

F walk = 

∑ f= f max 

f= f min 
F f ; 

if F walk ≥ F th then 

STATUS=WALKING; 

τopti = arg max τ R (i, τ ) ; 

τmin = τopti − 15 , τmax = τopti + 15 ; 

end 

end 

end 

Output: STATUS 

The initial status of the user is set as NOT WALKING (in-

lude IDLE and RUNNING ). Given an accelerometer signal se-

uence a (t)(t = 1 , 2 , · · · , N acc ) , we compute the normalized auto-

orrelation of a ( t ) for lag τ at sample i as [44] : 

 (i, τ ) = 

∑ k = τ−1 
k =0 

[
( a ( i + k ) − μ( i, τ ) ) 

( a ( i + k + τ ) − μ( i + τ, τ ) ) 

]

τδ( i, τ ) δ( i + τ, τ ) 
(1)

here μ( k, τ ) and δ( k, τ ) represent the mean and standard de-

iation of the samples. The auto-correlation R ( i, τ ) measures the

imilarity between acceleration signals as a function of the time

ag τ . R ( i, τ ) is in the range [ −1 , 1 ] and should be close to 1 when
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Fig. 4. Distribution of maximum auto-correlation of different activities. 
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Table 1 

Normal activities during walking. 

With arm swing Without arm swing 

normal walk walk with texting the phone 

walk upstairs walk with calling the phone 

walk downstairs walk with hand in jacket pocket 

walk with hand in pant pocket 

Table 2 

List of features used for activity classification. 

Feature Abbreviation Description 

mean mean The average of a window of 

samples 

maximum max The maximum value in a window 

of samples 

minimum min The minimum value in a window 

of samples 

variance var Measures the amount of variation 

or dispersion from the mean 

standard deviation std The square root of the variance 

ratio ratio The ratio of three accelerometer 

axes X/Y, X/Z, Y/Z 

t  
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L  
 subject is walking and τ is equal to the cycle of walking pat-

ern. As the period of the subject’s walking is unknown, we vary

between τmin and τmax to find the τ opti which makes the auto-

orrelation maximum (i.e., τ opti is the period of walking): 

 max (i ) = max τ= τmax 
τ= τmin 

R (i, τ ) (2)

As mentioned in our previous conference paper [11] , normal

ait duration lies in 0.8-1.3s which produces 40–65 samples (the

ampling rate of accelerometer is 50Hz). Therefore, the initial value

f (τmin , τmax ) is set to (40,65). Once the period of the subject’s

alking pattern is found in the first few steps (i.e., τ opti ), the

earch window is reduced to (τopti − 15 , τopti + 15) . 

Fig. 4 depicts the distribution of R max (m ) for IDLE, WALKING and

UNNING , we can see that the probability that the person is IDLE

s extremely low when ψ( t ) ≥ 0.7. However, we noticed that the

aximum auto-correlation values is similar between WALKING and

UNNING as both of them are repetitive activities. We notice that

he major difference between WALKING and RUNNING is the fre-

uency. In order to distinguish different repetitive activities, we ap-

ly Short Term Fourier Transform (STFT) on the acceleration sam-

les and calculate the spectral energy F walk (i.e., the magnitude of

he STFT coefficients) at typical walking frequencies ( f min , f max ) ,

e label the subject as walking if F walk is greater than a prede-

ned threshold F th (400 in our system). Note that this method can

lso be used to detect other repetitive activities such as running

y simply changing frequencies ( f min , f max ) to typical running fre-

uency ranges; however, in this paper we consider walking only.

he threshold in this Algorithm are set empirically. We evaluate

he performance of the system by changing the threshold from the

inimum value to the maximum value, then choose the one that

chieves the highest recognition accuracy. 

.1.2. Activity classifier 

After walking detection, we use an activity classifier to de-

ect how the user is walking. In this work, we focus on 7 of

he most common activities while people are walking and divide

hem into two categories as shown in Table 1 . The first category

s walking with arm swing which include normal walk, walk up-

tairs and walk downstairs. The second category is walking with-

ut arm swing which include walk with texting the phone, calling

he phone, and hand in jacket/pant pocket. 

The real time data from an accelerometer contains much noise

hat needs to be filtered out before using it for activity recogni-
ion. The moving average filter is a simple low pass filter com-

only used for regulating noisy signal. As the length of the fil-

er increases, the smoothness of the output increases, whereas the

harp modulations in the data are made increasingly blunt. In our

xperiment we find that an order of 3 can produce good results.

hus a moving average filter of order 3 is applied for noise re-

oval. After noise reduction, continuous sensor data is segmented

nto 2s sliding windows with 50% overlap. The window size of 2s

s chosen to balance between classification accuracy and latency

s discussed in Section 5.2 . The overlap in sliding window is used

o capture changes or transitions around the window limits. For

ach window, we extract a number of features as listed in Table 2 .

ccelerometer-based activity recognition has been well studied in

he literature [40,42,45] . Previous studies used different kinds of

eatures from both time and frequency domain representations of

ignals for activity recognition [40] . For computation efficiency, we

hoose some commonly used light-weight time domain features

n the system. Therefore, each window is represented as a feature

ector of length 18. These features are then used to train the clas-

ifier. As the evaluation in Section 5.2 , we choose k-NN classifier

s it achieves higher recognition accuracy than SVM and Decision

ree. 

.2. Feature extraction 

The feature extraction approach presented in this paper is moti-

ated by SIFT which is a commonly used feature extraction method

or image matching and object recognition [10] . However, SIFT only

orks for 2D image and does not apply to 1 dimension signal. In

his paper, we present a novel feature extraction method for one-

imensional gait signal. 

The input of the proposed feature extraction approach is the

egmented gait signal. The first stage is to identify locations and

cales that can be repeatably assigned under different step cycles

f the same subject. It has been shown that under a variety of rea-

onable assumptions the only scale-space kernel is the Gaussian

unction [10] . Therefore, the scale space of a gait signal is defined

s a function L ( t, δ), that is produced from the convolution of a

ariable-scale Gaussian G ( t, δ) with an input gait signal a ( t ): 

 (t, δ) = G (t, δ) ∗ a (t) (3)
δ
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where ∗ is the convolution operation and G δ( t, δ) is the zero-mean

Gaussian function with variance δ2 : 

G δ(t , δ) = 

1 √ 

2 π
exp 

(
−t 2 

2 δ2 

)
(4)

To detect stable keypoint locations in scale space, we compute

D ( t, δ) which is the difference of two nearby scales separated by a

constant multiplicative factor ν: 

D 

ν (t, δ) = (G (t, νδ) − G (t, δ)) ∗ a (t) 

= L (t, νδ) − L (t, δ (5)

Then the DoG responses of gait signal a ( t ) is represented by: 

E(t, δ) = (a ∗ D 

ν
δ )(t) (6)

Now we aim to localize the keypoints by finding the extrema of

E ( t, δ). Instead of searching E ( t, δ) continuously, we find extrema

in a κ-layer pyramid by defining a discrete series: 

E[ t, i ] = E(t, ν i −1 δ0 ) for i = 1 , 2 , · · · , κ (7)

where t is the sampling timestamp, i is the layer index and δ0 

is the base scale. To detect the local maxima and minima, each

point in E ( t, i ) is compared to its eight neighbors. It is selected

only when it is larger than all of these neighbors or smaller than

all of them. Any extremum in E ( t, i ) is viewed as a keypoint and

represented by a descriptor 
( t, δ). To accurately localize stable

extrema, those extrema with small ‖ E [ t, i ] ‖ which means low con-

trast will be rejected. Finally, the descriptor for each keypoint is

obtained by calculating the gradient of a vector which contains ρ
points uniformly sampled around t : 


(t, δ) = ∇ 

(
(v 1 , v 2 , · · · , v ρ ) 

‖ v 1 , v 2 , · · · , v ρ‖ 2 

)

where v i = ( a ∗ G δ ) 

(
t + i − ρ + 1 

2 

)
(8)

The descriptors are invariant to amplitude changes caused by vary-

ing walking speed. A change to the amplitude means each signal

value will be multiplied by the same constant, so this change can

be canceled by vector normalization. A speed change will not affect

the gradient values, as they are computed from differences. Fig. 5

illustrates two gait signal series from two different subjects and

their corresponding descriptors. We can see that the descriptors

extracted from the same signal have similar patterns; however, the
Fig. 5. Feature extraction: (a) The red crosses represent the locations of key points. (b) E

the references to colour in this figure legend, the reader is referred to the web version of
escriptors extracted from different signals are distinctive. In Gait-

atch, we empirically choose the length of the feature vector to

e 18 (i.e., q = 18 ). The length of the feature vector is a trade-off

etween recognition accuracy and resource consumption. A longer

eature vector will usually improve recognition accuracy but re-

uire more processing time at the same time. We find that after

he length is larger than 18, the accuracy improvement diminishes.

.3. Classification 

.3.1. Dictionary construction 

After feature extraction, the feature descriptors obtained from

raining data are used to construct the training dictionary. Re-

ent research shows that learning a dictionary by fitting a set

f overcomplete basis vectors to a collection of training samples

an generate more compact and informative representation from

iven data and achieve better recognition accuracy [46] . We con-

truct the training dictionary by sparse dictionary learning tech-

ique (also called sparse coding). In particular, we first learn one

ingle dictionary for each subject, which is formed by a set of ba-

is vectors learned by solving a sparse optimization problem. Then

e construct the full dictionary by concatenating single dictionar-

es together. 

Note that because descriptors obtained from training data and

est data are vectors, we will also refer to them as training vec-

ors and test vectors. Suppose we have K classes indexed by i =
 , . . . , K and each class i contains N training examples which are

enoted as S i = { s 1 , s 2 , s 3 , . . . , s N } , where S i contains the extracted

eature vectors from subject i . Each training example is assumed

o be a column vector with q elements (i.e., feature dimension).

or class k , we aim to find an overcomplete dictionary matrix

 k ∈ R 

q ×N over which a test vector has a sparse representation

 k = { x 1 , x 2 , . . . , x N i } . After that, the raw training examples S i can

e linearly expressed by n k vectors in A k where n k 	 N . The op-

imization problem of training a dictionary can be formulated as:

rg min 

A k ,X k 

‖ S k − A k X k ‖ 

2 
2 subject to ‖ x i ‖ 0 ≤ n k (9)

here are several dictionary learning algorithms that can be

sed to train a dictionary such as Method of Optimal Directions

MOD) [47] , K-Singular Value Decomposition (K-SVD) [46] and

onnegative Matrix Factorization (NMF) [48] . In this study, we
xtracted descriptors for the three keypoints in the left figure. (For interpretation of 

 this article.) 
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1 Ethical approval for carrying out this experiment has been granted by the cor- 

responding organization. 
hoose K-SVD because it is efficient, flexible and works in conjunc-

ion with any pursuit algorithms. The K-SVD algorithm involves

wo stages: firstly, A k is kept fixed and the coefficient matrix X k is

ptimized by orthogonal matching pursuit (OMP) algorithm. Then

he dictionary A k is updated using the calculated X k . The process

epeats until some stopping criterion (typically a fixed number of

terations) is achieved. The dictionary learning algorithm is de-

ailed in Algorithm 2 . After constructing a dictionary for each sub-

Algorithm 2: Subject-Specific Dictionary Learning. 

Input: Training samples S = { s 1 , s 2 , s 3 , . . . , s N } , initial 

dictionary A 0 ∈ R 

q ×N , target sparsity τ ; 

Output: Dictionary A and sparse coefficients matrix X; 

Initialization: set dictionary A = A 0 ; 

while != stopping criteria do 

x i = arg min x ‖ s i − x ‖ 2 
2 

s.t. ∀ i ‖ Ax ‖ 0 ≤ τ ; 

for j = 1 , . . . , N do 

J = { indices of the columns of X orthogonal to w j ( j-th 

column of A ) } ; 
w j = arg min w 

‖ w 

T A J ‖ 2 2 
s.t. ‖ w ‖ 2 = 1 ; 

A ( j-th row ) = w 

T 
j 
; 

end 

end 

ect, we concatenate single dictionaries together to form the initial

raining dictionary A = [ A 1 , A 2 , · · · , A K ] . 

.3.2. Column reduction 

According to the formation of � 1 −Homotopy, the computational

omplexity is O (τ 3 + τq (N · K)) , where τ is the sparsity of the so-

ution ( τ 	 N · K ), q is the number of equations, and N · K is

he number of unknowns, i.e., the number of columns in the train-

ng dictionary (please refer to [49] for more details). We can see

hat the computation of � 1 optimization is also proportional to the

umber of columns ( N · K ) in the dictionary A . The gait cycles in

he same class are highly correlated and lead to intra class redun-

ancy. To reduce the intra class redundancy in the dictionary while

etaining the most informative columns, we apply the columns re-

uction approach [39] to improve the efficiency and obtain an op-

imised dictionary Ā . 

.3.3. PSRC 

SRC proposed in [50] aims to solve the classification problem

f one test vector. To overcome this limitation, we present a novel

robabilistic fusion model which fuses the information from multi-

le consecutive gait cycles to further improve recognition accuracy.

Suppose we have obtained a series of gait signal whose

ength is Ts , and we have acquired a set of M descriptors Y =
 y 1 , y 2 , . . . , y M 

} from this signal. Following the single test vector

pproach described in [50] , we can obtain a set of estimated coef-

cients vectors ˆ X = { ̂ x 1 , ̂  x 2 , . . . , ̂  x M 

} by solving the � 1 optimization

roblem for each feature descriptor. Then we calculate the residual

or each feature descriptor as [50] and obtain � = { r 1 , r 2 , . . . , r M 

} .
he probability of the m -th test descriptor belonging to the i -th

lass is defined p(φ = i | y m 

) where φ is used to denote the iden-

ity of y m 

. Taking the elements of Y as independent observations,

he probability of all M descriptors belonging to i -th class can be

enoted by p(φ = i | Y ) . 
As discussed in [50] , the magnitude of r i represents the similar-

ty between the test sample and i -th subject. With this knowledge,

e use the � 1 -norm of the residual r i to define the posterior prob-

bility of m = i given y m 

as follows: 

p(φ = i | y m 

) = 

exp(−λ‖ r i ‖ 1 ) ∑ M 

j=1 exp(−λ‖ r j ‖ 1 ) 
∈ [0 , 1] (10)
here λ is a constant parameter. We vary the value of λ from 0 to

 with an increment of 0.1 and find that it can achieve the highest

ccuracy when λ= 0.3. Therefore, we choose λ= 0.3 in Gait-watch. 

For the i -th subject, we define θ i as 

i = 

∑ 

y ∈ Y 
ln p(φ = i | y ) (11) 

ince we have no prior knowledge of y , it should normally follow a

niform distribution over 1 , 2 , . . . , M , say p(φ = i ) = 1 /M. We can

btain the probability of all M gait cycles belonging to i -th class

p(φ = i | Y ) as follows: 

p(φ = i | Y ) = 

exp(φi ) ∑ M 

j=1 exp(φ j ) 
∈ [0 , 1] (12)

With the knowledge of p(φ = i | Y ) , the final classification result

s obtained by finding the maximum posterior probability: 

dent it y = max 
i 

p(φ = i | Y ) (13)

o identify whether the walker is the genuine user or imposter, we

an make decision based on a threshold as: 

p 

{
≥ C genuine user 
< C imposter 

(14) 

here C is a threshold we set empirically. An appropriate threshold

an be chosen by data-driven approach to make the recognition

ystem robust to imposters. 

. Evaluation 

.1. Goals, metrics and methodology 

In this section, we evaluate the performance of Gait-watchvia

imulation. The goals of the simulation are threefold: 1) to eval-

ate the performance of activity classifier; 2) whether Gait-

atchimproves recognition accuracy by leveraging the activity in-

ormation; 3) whether Gait-watchachieves high accuracy in differ-

ntiating imposters and genuine users. 

In this paper, we focus on the following metrics: 

• Recognition accuracy : it represents the percentage of correct

classifications which can be calculated as the percentage of the

total number of tests that resulted in correct classifications. 

• False match rate (FMR) : it is the measure of probability that

the authentication system incorrectly accepts the access request

by an imposter. 

• False rejection rate (FRR) : it is the measure of the probabil-

ity that the authentication system incorrectly rejects the access

requests from the genuine users. 

In general, FMR relates to the security of the system, while FRR

o the usability. An interesting point in the Decision Error Trade-

ff (DET) curve is the Equal Error Rate (EER) where FMR = FRR. For

nstance, an EER of 5% means that out of 100 genuine trials 5 is in-

orrectly rejected, and out of 100 impostor trials 5 are wrongfully

ccepted. 

Data Collection To evaluate the performance of Gait-watch, we

ollected data (accelerometer data) with Samsung smart watch in

oth controlled environment and real-world environment 1 . 

We developed a sensor recording application on smart watch.

he application collects the sensor data continuously after the par-

icipant launches it. During data collection phase, the participants

ore the smart watch at one of their wrists at will, and were asked

o perform the activities listed in Table 1 with equal proportion
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Table 3 

Summary of gait dataset. 

Property Value 

Subjects 36 (20 males,16 females) 

Age 22–43 

Height 157–181 cm 

Weight 48–86 kg 

Recording session 2 

Time interval between two sessions 1–2 months 

Length of each record 5–10 minutes 

Sample frequency 100 Hz 

Fig. 6. Illustration of data collection. 
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to avoid class imbalance. For each activity, the participants were

requested to walk 3 minutes at their normal speed. Each activity

contains approximately 1.3 × 10 6 samples. The data collection is

performed in several environments (indoor and outdoor) in order

to capture different terrains. There were 36 volunteers (20 males

and 16 females) participating in data acquisition. More details of

the gait dataset are summarized in Table 3 . An illustration of in-

door environment and outdoor environment is shown in Fig 6 (a)

and Fig 6 (b). The terrain of the chosen outdoor environment varies

including plain, grass and asphalt. Each volunteer participated in

two data collection sessions that was separated by 1–2 months.

We will refer to these sessions as session 1 and session 2 respec-

tively. A participant might dress in different ways (e.g. different

clothes and shoes) for the two sessions. Based on the above de-

scription, the dataset is close to a realistic environment as it in-

cludes the natural gait changes over time and different environ-

ments (indoor and outdoor). In total, we obtained about 17 hours

of data to evaluate the performance of Gait-watch. 
As our goal is to recognize different subjects when the user per-

orms different activities. We organize the dataset in two differ-

nt forms for different purposes: activity dataset and gait dataset.

he activity dataset is organized based on the activity labels and

sed to evaluate the performance of activity classifier. The activity

ataset is organised based on the subject and used to evaluate the

ccuracy of gait recognition. In the following evaluations, we per-

orm 10-fold cross-validation on the collected dataset and plot the

esults of the average values. Specifically, we randomly split the

ataset into 10 folds with equal size. Then, each fold is retained as

he validation data for testing the classifier, and the remaining 9

olds are used as training data. The cross-validation process is then

epeated 10 times, with each of the 10 folds used exactly once as

he testing data. 

.2. Performance of activity classifier 

In this section, we evaluate the recognition accuracy of differ-

nt classifiers based on activity dataset. Then, we demonstrate that

ait-watchimproves recognition accuracy by leveraging the activity

nformation. 

.2.1. Comparison of different activity classifiers 

We evaluate the recognition accuracy of three mostly used

lassifier in online activity recognition: k-NN, SVM and Decision

ree [42] . We first evaluate the accuracy of k-NN by varying k (the

umber of nearest neighbor) from 3 to 50. As shown in Fig 7 (a),

-NN achieves best accuracy when k = 3 . After k is determined, we

valuate the accuracy of different methods by varying window size

rom 0.5s to 2.5s. As we can see from Fig 7 (b), k-NN achieves the

lassification accuracy by up to 98.6% when window size is chosen

s 2s, and shows higher accuracy than SVM and Decision Tree at all

easible window size. The window size determines how many fea-

ures can be extracted. A longer window means more features can

e extracted and thus can achieve high accuracy. Therefore, from

ig. 7 (b) we can see the accuracy of 2s window is higher than that

f 1s and 0.5s. However, a longer window will sacrifice user expe-

ience because it requires users to walk more steps. Based on this

xperiment, we choose k-NN as activity classifier, the window size

nd k value is chosen as 2s and 3 respectively. It should be noted

hat k-NN is used to detect the activity of the user rather than ver-

fying the identity of the user. 

.2.2. Improvement of recognition accuracy by using activity classifier

Traditional gait-based recognition system assumes the user

alks normally. In order to deal with the problem of various ac-

ivities, a common method is to train a large dictionary by assem-

ling gait features from all activities. We term this method as con-

entional method , and compare it with context-aware Gait-watch.

or conventional method , we use all gait features of each subject

o form the training dictionary. Regarding Gait-watch, we first per-

orm activity detector to check the user’s activity. Based on the re-

ult of activity classifier, user recognition is performed based on

he appropriate training data. For example, if the test gait signal

s labeled with walking upstairs, we use gait features from walk-

ng upstairs to form the training dictionary only. We evaluate the

ecognition accuracy of Gait-watchby extracting features from dif-

erent length of gait signals. The more gait data we collect, the

igher accuracy will achieve as we can extract more features. As

hown in Fig 7 (c), we can observe a significant accuracy improve-

ent of Gait-watchover conventional method , the improvement can

e up to 30.2% when T = 2 . 5 s . The improvement diminishes after

 > 2.5 s . The results suggest that it is critical to know the user’s ac-

ivity for authentication, and the proposed context-aware authenti-

ation system improves recognition accuracy significantly by lever-

ging the activity information. Additionally, for comparison pur-



W. Xu, Y. Shen and C. Luo et al. / Ad Hoc Networks 107 (2020) 102218 9 

Fig. 7. Evaluation results of activity classification: (a) accuracy of different number of neighbors. (b) comparison of different methods. (c) improvement of recognition 

accuracy by using activity classifier. 

Fig. 8. Evaluation of activity classification. 
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ose, Fig 7 (c) also shows the results of our previous conference pa-

er [11] , we can see that the improvement varies from 2% to 6.5%.

he improvement originates from two aspects. First, the dictionary

n this paper is trained by dictionary learning rather than simply

ssembling different f eatures together. Learning a dictionary can

enerate more compact and informative representation from given

ata and achieve better recognition accuracy. Second, the feature

xtraction method used in this paper can extract robust and dis-

riminative features from gait signals. To take a further look at the

esults, we plot the mean accuracy of each subject as well as 95%

onfidence level in Fig. 9 . We can see that the mean accuracy of

ifferent subjects are similar. The error bar can be used to indicate

he worst case of each subject. The results demonstrate that our

ystem can recognize different subjects with high accuracy. 

.2.3. Comparison with other gait recognition methods 

We compare Gait-watchwith several state-of-the-art gait recog-

ition methods, namely, Dynamic Time Warping with Nearest
eighborhood (DTW+NN) [51] and Time-Delay Embeddings with

emplate Matching (TDE+TM) [52] . We perform evaluation in two

ategories: same day evaluation and different days evaluation.

ame day evaluation means the training set and test set are cho-

en from the sessions of the same day while different days evalua-

ion chooses the sessions of different days. We vary the number of

ait cycles M from 1 to 6 and calculate the recognition accuracy of

ifferent methods. As our method is not based on extracting gait

ycles, we can extract features from gait signals with any length.

e calculate the accuracy of our method with 0.5 gait cycle, 1 gait

ycle,..., 6 gait cycles. 

Fig 8 (a) presents the evaluation results. From the same day

valuation, we can see that Gait-watchachieves the best recogni-

ion accuracy. Fig 8 (b) plots the recognition accuracy from different

ays evaluation. The accuracy of all the gait recognition methods is

lightly lower than the same day evaluation as the different days

valuation tends to produce more dynamics between the training
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Fig. 9. Accuracy of each subject. 

Fig. 10. Evaluation results. 
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data and test data. The observations from the same day evaluation

still hold true in the different days evaluation. The overall recogni-

tion accuracy of different methods are shown in Fig 8 (c). We can

see that Gait-watchis 17% better than TDE+TM and 20% better than

DTW+NN when M = 3 . We also notice that the recognition accu-

racy of Gait-watchincreases when more gait cycles are fused for

recognition, this is intuitive as more information can be obtained

by fusing multiple gait cycles together. The overall recognition ac-

curacy of Gait-watchis over 95% when 3 or more consecutive gait

cycles are used. However, for our previous conference version, it

requires at least 5 gait cycles to achieve over 95% accuracy. We

define the number of gait cycles as a user or application defined

parameter; more accurate recognition will be achieved when the

user would like to make more effort s. The setting of more gait cy-

cles indicates more time it will take before collecting sufficient gait

cycles to authenticate the walker. 

5.2.4. Impact of different activities 

We now evaluate the recognition accuracy under different ac-

tivities to explore the impact of activity on Gait-watch. For each

activity, we use the features extracted from the activity to perform

10-fold cross-validation. From the results in Fig 8 (d), we can see

that walking normally shows better performance than other activ-

ities if we use only one gait cycle for recognition. Walking with

hand in jacket/pant pocket performs the worst because the sub-

jects wore different clothes at different days during data collec-

tion phase. The results indicate that, if we do have control over the

users, walking normally is a good activity to use for identification

purposes. However, when we fuse several gait cycles to perform
ecognition, different activities show comparable recognition accu-

acy as shown in Fig 8 (f). This result demonstrates the advantage

f the proposed sparse fusion method. Also, it indicates that Gait-

atchcan recognize the user under various activities with a high

ccuracy. 

.2.5. Impact of different training dataset size 

Next, we evaluate the accuracy of the proposed system under

ifferent sizes of training dataset. In this experiment, we use differ-

nt proportions of the whole dataset for training, and use the left

ataset for testing. The proportion increases from 10% to 90% with

n increment of 10%. For example, the proportion of 10% means

e use 10% of the dataset for training, and use the left dataset for

esting. From the results in Fig. 10 (a), we can see that the accuracy

f our methods becomes relatively stable after 50% of the dataset

s used for training. The accuracy drops quickly when we use less

ata for training. This is because the dictionary-based method re-

uires a lot of data to learn the representation of the raw signal. 

.2.6. Robustness against attackers 

As mentioned previously, an attacker can imposter the genuine

ser to gain access to the smartwatch. To evaluate the robustness

f Gait-watchagainst the imposter attack scenario, we group the

6 subjects into 18 pairs. Each subject was told to mimic his/her

artner’s walking style and try to imitate him or her. Firstly, one

articipant of the pair acted as an attacker, the other one as a

arget, and then the roles were exchanged. The genders of the at-

acker and the target were the same. They observed the walking

tyle of the target visually, which can be easily done in a real-life
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ituation as gait cannot be hidden. Every attacker made 5 active

mpostor attempts. As an authentication system, Gait-watchis sen-

itive to false acceptance rate. Therefore, we set T = 5 s to reduce

alse positive rate. We vary the confidence threshold C and plot

ET curve in Fig 10 (b). The black dash line stands for the possi-

le points where FMR is equal to FRR. The crossover (marked as a

quare) of the black dash line and the red FMR-FRR curve stands

or the location of the EER. We notice that EER of Gait-watchis as

ow as 3.5%, which means out of 100 impostor trials only 3.5 are

rongfully accepted. Additionally, we plot the results of our con-

erence paper for comparison purpose. We can see that this pa-

er further reduces EER from 5.6% to 3.5%. The setting of more

teps indicates more time it will take before collecting sufficient

tep cycles to detect the suspect. Therefore, we define the number

f steps as a user-defined parameter: more accurate authentication

ill be achieved if the users would like to pay more effort s on the

alking. 

. User study in the wild 

Our final study aims to evaluate the performance of Gait-

atchin real world scenarios. 

.1. System implementation 

The prototype of Gait-watchis implemented on Samsung Gear

ive Smart Watch. The CPU is a Qualcomm Snapdragon at 1.2GHz

nd the operating system is Android wear. The efficient implement

f � 1 optimization algorithm � 1 -Homotopy [49] is used. To reduce

he expected response time, we implement Gait-watchin multiple

hreads. 6 threads are allocated for Gait-watchaccording to the sys-

em setting. One of the threads is responsible for the step detec-

ion. The rest of the threads are in idle before the sensor data of

ait cycles are received. For each time a new step is detected, the

orresponding sensor data of the step cycle is passed to activate a

ew thread. After all the sparse coefficients vectors are obtained

y dynamic sparse representation, the authentication decision is

etermined by comparing the confidence level with a pre-defined

arameter C as Eq 14 . The time duration to collect gait signal is

 = 3 s and the confidence level threshold is C = 0 . 37 . 

.2. User study 

We recruited 6 users (3 males and 3 females) for this study. The

sers wore the smart watch for 2 hours per day for three different

ays. We asked the users to launch Gait-watchafter they put the

mart watch on and end it after they take it off. Gait-watchworks

ontinuously after it is launched, and logs the authentication deci-

ion after the required length of gait signals are collected. 

In practice, Gait-watchcan run in a power saving mode. It starts

s a background service when the user puts the smart watch on,

nd performs authentication when it detects the wearer is walking.

f the wearer is accepted as genuine user, Gait-watchstops working

nd the wearer will be regarded as the owner continuously with-

ut additional authentication before the take-it-off action is de-

ected. This is due to the fact that the smart watch must be on the

ame subject’s wrist before a take-it-off activity is detected. The

ut-it-on and take-it-off activities can be detected by the take-on

ensor in smart watch. 

.3. Experimental results 

Fig 11 shows the results of the user study. We notice that

he total number of authentication attempts varied between 44

o 86 per day. Of all the 1016 detected authentications, Gait-

atchauthenticates the genuine users correctly by 967 times, i.e.,
he True Positive Rate (TPR) achieves up to 95.2%. The results

emonstrate the effectiveness of Gait-watchin authenticating users

n real world scenarios. 

Table 4 shows the resource consumption of Gait-

atchmeasured on Samsung Smart Watch. The computation

ime is obtained from the console of the Eclipse development

nvironment and averaged by the results from 30 authentication

ttempts. The memory usage is measured by PowerTutor App (it

as also used in [35] ). The computation time of the five stages in

he pipeline: walking detection, activity detection, segmentation

nd interpolation, classification take an average time of 120, 80, 4,

46 and 270 ms, respectively. When the whole pipeline is fully en-

aged, Gait-watchtakes about 2.5s to collect the required gait data

nd can respond in approximately 820 ms. Besides, it consumes

03.6 mJ only. The memory requirement to execute Gait-watchis

odest and varies between 40–49 MB. Although the approaches

n this work are more complex than our previous paper [11] ,

e notice that the computation time and energy consumption

re very close. This is due to the following two reasons. First,

ompared to [11] the system in this paper is based on feature

xtraction. Thus it does not require some signal processing steps

n [11] such as gait cycle segmentation, interpolation and unusual

ycle deletion. More importantly, as the accuracy of this system

s higher than our previous system, the required signal length

o achieve similar accuracy is reduced. For example, in [11] , it

equires 6 gait cycles (about 4.8-5.5s) to achieve 96% accuracy.

owever, the system proposed in this paper only requires less

han 3s. Therefore, the total processing time is comparable. It is

orth mentioning that we also measure the power consumption

hen the Samsung watch is idle which is 168mW. 

The user study results show that Gait-watchcan recognize the

ser accurately in real world scenarios and require low system

ost. Therefore, it is feasible to implement Gait-watchon off-the-

helf smart watches. However, we are aware that gait-based au-

hentication system cannot provide a absolutely secure way to

rotect the data in smart watch. We imagine in the future to

ave many levels of security (e.g., two factor authentication) that

radeoff usability and accessibility given the risk imposed. For in-

tance, accessing a user’s bank account clearly requires higher se-

urity than retrieving the time of the next meeting and occurs

ess frequently, hence requiring additional authentication scheme

e.g., PIN) after Gait-watchgrants user the access to use the smart

atch. 

We also need to note that another common strategy is offload-

ng computationally intensive operations from mobile devices to

ocal or remote server to reduce computation burden on resource

onstrained devices. However, as mentioned in [38] , the usabil-

ty of the cloud-based recognition systems relies on the wireless

onnectivity. It is difficult to ensure the smartwatch can always

e connected to the server. Therefore, the in-situ approaches are

referable considering the relatively high cost of wireless trans-

ission and the inconvenience of relying on wireless connections.

n the user study, the app is running in continuous authentication

ode which drains the battery of smart watch quickly. This is the

eason why our user study only lasts for 2 hours per day. However,

s mentioned above, Gait-watchonly needs to perform one authen-

ication per day because it is worn on the same user after the user

uts it on. Based on the results in Table 4 , the energy consumption

f one authentication is negligible compared to the whole battery

ife of smart watch. 

.4. Validity analysis 

In this section, we discuss threats to the validity of our study.

n the data collection and user study, the participants are randomly

hosen and they are from different countries with different height,
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Fig. 11. Evaluation results of user study: total count means the total number of authentication attempts user performed and true positive means the number of accepted 

authentications. 

Table 4 

System overhead. 

Computation time (ms) Energy consumption (mJ) 

Walking detection 120 121 

Activity classification 80 20.6 

Signal processing 4 6 

Feature extraction 346 289 

Classification 270 167 

Total 820 ms 603.6 mJ 

Memory usage 40–49 MB 
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weight and genders. Moreover, we repeat the data collection and

user study in different days during which they may wear differ-

ent clothes and shoes. Therefore, this study has high internal valid-

ity. However, the external validity is relatively low because it lacks

some generalizability. First, the participants are students or faculty

members working at our university. Second, although the data is

collected from both indoor and outdoor environments, the indoor

environment only includes one office and the outdoor environment

only includes one walking path. It is unclear how the system per-

forms for other groups of people such as labour workers, and in

other environments which have different terrains. This is the limi-

tation of our current work, and we will mitigate this threat in our

future work by collecting more data from different groups of peo-

ple and different environments. 
. Conclusion 

Gait recognition on mobile devices is a hot research topic in

ecent years. In this work, we address the problem of recogniz-

ng the user under different activities. In the proposed Gait-watch,

e first present a feature extraction technique that can extract dis-

riminative features from user’s gait signal. Then we employ sparse

oding to build different training dictionaries for different activi-

ies for the genuine user. Extensive evaluation results show that

ait-watchimproves recognition accuracy greatly by leveraging the

ctivity information and can recognize the user accurately in real

orld scenarios. We also perform a user study to demonstrate the

easibility of Gait-watchfor commercial smart watches. Evaluation

esults show Gait-watchcan authenticate the user in real world ap-

lications with high accuracy and require low system cost. To sum

p, Gait-watchprovides an unobtrusive, continuous authentication

ay for smart watch users. 
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